GoFEM: Electromagnetic forward and inverse solver
- Date
GoFEM is an electromagnetic forward and inverse solver (written in C++) based on cutting-edge numerical and optimization methods. GoFEM's scalable methods based on multi-scale adaptive meshes allow one to model largest existing data sets in most challenging settings.
pyGoFEM is a Python frontend for the GoFEM that helps to pre-/post-processes all results. For more details, see this GitHub repository.
Here are some 3-D models and meshes obtained with the GoFEM.
GoFEM is distributed under the AGPL license. If you are interested in using the software for academic or commercial purposes, please do get in touch.
Features
Methods: Magnetotellurics, CSEM, GDS, DC/ERT, Global EM
Supported current sources: plane-wave, dipole (electric and magnetic), sheet current, volume current
Receivers: dipole, line, sheet
Model domain: projected Cartesian (local, regional scales) and Spherical (continental to global)
Dimensions: 1-D, 2-D, 3-D
Studies about GoFEM
Grayver, A., Kuvshinov, A., & Werthmüller, D., (2021), Time‐domain modeling of 3-D Earth's and planetary electromagnetic induction effect in ground and satellite observations. Journal of Geophysical Research: Space Physics, 126, e2020JA028672. https://doi.org/10.1029/2020JA028672
Grayver, A., van Driel, M., & Kuvshinov, A. V., 2019. Three-dimensional magnetotelluric modelling in spherical Earth, Geophysical Journal International, 217(1), 532-557, doi: https://dx.doi.org/10.1093/gji/ggz030
Grayver A., and Kolev, T. V., 2015, Large-scale 3D geo-electromagnetic modeling using parallel adaptive high-order finite element method, Geophysics, 80(6), pp. 277-291, doi: https://dx.doi.org/10.1190/GEO2015-0013.1
Grayver A., 2015, Parallel 3D magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study, Geophysical Journal International, 202(1), pp. 584-603, doi: https://dx.doi.org/10.1093/gji/ggv165
Grayver, A., and Bürg, M., 2014, Robust and scalable 3D geo-electromagnetic modeling approach using the finite element method, Geophysical Journal International, 198(1), pp. 110-125, doi: https://dx.doi.org/10.1093/gji/ggu119
Studies using GoFEM
Dambly, L., Samrock, F., Grayver, A., H., Eysteinsson, Saar, M., (2024). Geophysical imaging of the active magmatic intrusion and geothermal reservoir formation beneath the Corbetti prospect, Main Ethiopian Rift, Geophysical Journal International, 236(3), https://doi.org/10.1093/gji/ggad493
Dambly, M. L. T., Samrock, F., Grayver, A., & Saar, M. O. (2023). Insights on the Interplay of Rifting, Transcrustal Magmatism and Formation of Geothermal Resources in the Central Segment of the Ethiopian Rift Revealed by 3-D Magnetotelluric Imaging. Journal of Geophysical Research: Solid Earth, 128(7), https://doi.org/10.1029/2022JB025849
Samrock, F., Grayver, A., Dambly, M. L. T., Müller, M. R., & Saar, M. O. (2023). Geophysically guided well siting at the Aluto-Langano geothermal reservoir. Geophysics, 88(5), WB105-WB114.: https://doi.org/10.1190/geo2022-0617.1
Munch, F. D., & Grayver, A. (2023). Multi-scale imaging of 3-D electrical conductivity structure under the contiguous US constrains lateral variations in the upper mantle water content. Earth and Planetary Science Letters, 602, 117939. https://doi.org/10.1016/j.epsl.2022.117939
Comeau, M. J., Becken, M., Grayver, A., Käufl, J. S., & Kuvshinov, A. V. (2022). The geophysical signature of a continental intraplate volcanic system: From surface to mantle source. Earth and Planetary Science Letters, 578, 117307. https://doi.org/10.1016/j.epsl.2021.117307
Grayver, A. (2021). Global 3-D Electrical Conductivity Model of the World Ocean and Marine Sediments. Geochemistry, Geophysics, Geosystems, 22(9), https://doi.org/10.1029/2021GC009950
Samrock, F., Grayver, A., Bachmann, O., Karakas, Ö., Saar, M. O., (2021). Integrated magnetotelluric and petrological analysis of felsic magma reservoirs: Insights from Ethiopian rift volcanoes, Earth and Planetary Science Letters, 559, 116765, https://doi.org/10.1016/j.epsl.2021.116765
Käufl, J. S., Grayver A., Comeau M., Kuvshinov A. V., Becken M., Kamm J., 2020, Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia, Geophysical Journal International 221, https://doi.org/10.1093/gji/ggaa039
Grayver, A., and Olsen, N., 2019, The magnetic signatures of the M2, N2, and O1 oceanic tides observed in Swarm and CHAMP satellite magnetic data. Geophysical Research Letters, 46, 1–9. https://doi.org/10.1029/2019GL082400
Morschhauser, A., Grayver, A. V., Kuvshinov A. V., Samrock F., Matzka J., 2019, Tippers at island geomagnetic observatories constrain electrical conductivity of oceanic lithosphere and upper mantle, Earth Planets and Space, 71:17, https://doi.org/10.1186/s40623-019-0991-0
Samrock, F., Grayver, A. V., Eysteinsson, H., & Saar M. O., 2018, Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian Rift, Geophysical Research Letters, 45, https://doi.org/10.1029/2018GL080333
Käufl, J. S., Grayver, A. V., & Kuvshinov, A. V., 2018, Topographic distortions of magnetotelluric transfer functions: a high-resolution 3-D modelling study using real elevation data. Geophysical Journal International, 215(3), 1943-1961, https://doi.org/10.1093/gji/ggy375