Dr. Alexander Grayver

personal photo of Dr. Alexander Grayver

GoFEM: Electromagnetic forward and inverse solver

Date
By:Dr. Alexander Grayver
cover image of GoFEM: Electromagnetic forward and inverse solver

GoFEM is an electromagnetic forward and inverse solver (written in C++) based on cutting-edge numerical and optimization methods. GoFEM's scalable methods based on multi-scale adaptive meshes allow one to model largest existing data sets in most challenging settings.

pyGoFEM is a Python frontend for the GoFEM that helps to pre-/post-processes all results. For more details, see this GitHub repository.

Here are some 3-D models and meshes obtained with the GoFEM.

Diagram showing key technologies, methods and libraries used in GoFEM
Diagram showing key technologies, methods and libraries used in GoFEM

GoFEM is distributed under the AGPL license. If you are interested in using the software for academic or commercial purposes, please do get in touch.

Features

  • Methods: Magnetotellurics, CSEM, GDS, DC/ERT, Global EM

  • Supported current sources: plane-wave, dipole (electric and magnetic), sheet current, volume current

  • Receivers: dipole, line, sheet

  • Model domain: projected Cartesian (local, regional scales) and Spherical (continental to global)

  • Dimensions: 1-D, 2-D, 3-D

Studies about GoFEM

  • Grayver, A., Kuvshinov, A., & Werthmüller, D., (2021), Time‐domain modeling of 3-D Earth's and planetary electromagnetic induction effect in ground and satellite observations. Journal of Geophysical Research: Space Physics, 126, e2020JA028672. https://doi.org/10.1029/2020JA028672

  • Grayver, A., van Driel, M., & Kuvshinov, A. V., 2019. Three-dimensional magnetotelluric modelling in spherical Earth, Geophysical Journal International, 217(1), 532-557, doi: https://dx.doi.org/10.1093/gji/ggz030

  • Grayver A., and Kolev, T. V., 2015, Large-scale 3D geo-electromagnetic modeling using parallel adaptive high-order finite element method, Geophysics, 80(6), pp. 277-291, doi: https://dx.doi.org/10.1190/GEO2015-0013.1

  • Grayver A., 2015, Parallel 3D magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study, Geophysical Journal International, 202(1), pp. 584-603, doi: https://dx.doi.org/10.1093/gji/ggv165

  • Grayver, A., and Bürg, M., 2014, Robust and scalable 3D geo-electromagnetic modeling approach using the finite element method, Geophysical Journal International, 198(1), pp. 110-125, doi: https://dx.doi.org/10.1093/gji/ggu119

Studies using GoFEM

  • Dambly, L., Samrock, F., Grayver, A., H., Eysteinsson, Saar, M., (2024). Geophysical imaging of the active magmatic intrusion and geothermal reservoir formation beneath the Corbetti prospect, Main Ethiopian Rift, Geophysical Journal International, 236(3), https://doi.org/10.1093/gji/ggad493

  • Dambly, M. L. T., Samrock, F., Grayver, A., & Saar, M. O. (2023). Insights on the Interplay of Rifting, Transcrustal Magmatism and Formation of Geothermal Resources in the Central Segment of the Ethiopian Rift Revealed by 3-D Magnetotelluric Imaging. Journal of Geophysical Research: Solid Earth, 128(7), https://doi.org/10.1029/2022JB025849

  • Samrock, F., Grayver, A., Dambly, M. L. T., Müller, M. R., & Saar, M. O. (2023). Geophysically guided well siting at the Aluto-Langano geothermal reservoir. Geophysics, 88(5), WB105-WB114.: https://doi.org/10.1190/geo2022-0617.1

  • Munch, F. D., & Grayver, A. (2023). Multi-scale imaging of 3-D electrical conductivity structure under the contiguous US constrains lateral variations in the upper mantle water content. Earth and Planetary Science Letters, 602, 117939. https://doi.org/10.1016/j.epsl.2022.117939

  • Comeau, M. J., Becken, M., Grayver, A., Käufl, J. S., & Kuvshinov, A. V. (2022). The geophysical signature of a continental intraplate volcanic system: From surface to mantle source. Earth and Planetary Science Letters, 578, 117307. https://doi.org/10.1016/j.epsl.2021.117307

  • Grayver, A. (2021). Global 3-D Electrical Conductivity Model of the World Ocean and Marine Sediments. Geochemistry, Geophysics, Geosystems, 22(9), https://doi.org/10.1029/2021GC009950

  • Samrock, F., Grayver, A., Bachmann, O., Karakas, Ö., Saar, M. O., (2021). Integrated magnetotelluric and petrological analysis of felsic magma reservoirs: Insights from Ethiopian rift volcanoes, Earth and Planetary Science Letters, 559, 116765, https://doi.org/10.1016/j.epsl.2021.116765

  • Käufl, J. S., Grayver A., Comeau M., Kuvshinov A. V., Becken M., Kamm J., 2020, Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia, Geophysical Journal International 221, https://doi.org/10.1093/gji/ggaa039

  • Grayver, A., and Olsen, N., 2019, The magnetic signatures of the M2, N2, and O1 oceanic tides observed in Swarm and CHAMP satellite magnetic data. Geophysical Research Letters, 46, 1–9. https://doi.org/10.1029/2019GL082400

  • Morschhauser, A., Grayver, A. V., Kuvshinov A. V., Samrock F., Matzka J., 2019, Tippers at island geomagnetic observatories constrain electrical conductivity of oceanic lithosphere and upper mantle, Earth Planets and Space, 71:17, https://doi.org/10.1186/s40623-019-0991-0

  • Samrock, F., Grayver, A. V., Eysteinsson, H., & Saar M. O., 2018, Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian Rift, Geophysical Research Letters, 45, https://doi.org/10.1029/2018GL080333

  • Käufl, J. S., Grayver, A. V., & Kuvshinov, A. V., 2018, Topographic distortions of magnetotelluric transfer functions: a high-resolution 3-D modelling study using real elevation data. Geophysical Journal International, 215(3), 1943-1961, https://doi.org/10.1093/gji/ggy375